St. Louis Hadoop User Group
December 16, 2014

.. 1. Introduction to R

- 2. About Hue

.' g o ‘ Tom Wheeler

< ' Cloudera, Inc.

BHEFVRD SERES S D)

What is R?

Language for statistical computing
Re-implementation of the S programming language

Open source (GNU license)

A pirate's favorite lancuage?
p guag

-

Getting R

Cross-platform (Windows, Linux, Mac OS X, ...)
Source and binaries available from r-project.org

[t's even easier on Debian or Ubuntu Linux:

$ sudo apt-get install r-base

There are also IDEs for R, but we'll skip these for now

Starting R in Interactive Mode

O To run R interactively, execute the R command

$ R

O You can then enter R statements at the prompt

R is an interpreted language, so there's no compile step

> print("hello world")
[1] "hello world"

NOTE: I'll show the R prompt and R statements in blue to help

distinguish them from the output that these statements produce

Exiting Interactive Mode

O This is harder than you think!

> exit
Error: object 'exit' not found

> quit

function (save = "default", status = 0, runLast = TRUE)
.Internal(quit(save, status, runLast))

<bytecode: 0x1a84b98>

<environment: namespace:base>

>

O OK, so how do you exit then!

Exiting Interactive Mode, Part II

O Use the quit () function, or its short equivalent, q()
Alternatively, you can hit Ctrl-d

> quit()
Error: object 'exit' not found
> Save workspace image? [y/n/c]: n

$

O You can avoid this prompt by starting R thusly

$ R --no-save

Running R Scripts

O It's a hassle to type your entire program every time
You can save your R statements to a text file

Anything following a # on a line is ignored (comments)

0O Use the source() function to load and execute them

> source("my_program.R")

O You can also run them non-interactively (batch mode)

$ R --no-save < my_program.R

R Packages and CRAN

O Packages are another benefit of R

O The best code is the code you don't have to write

O CRAN=Comprehensive R Archive Network

> install.packages("lubridate")

Assignment and Types

O You assign variables using less-than and minus signs

Using equals also works (mostly), but is discouraged

> answer <- 42
> body_ temp <- 98.6
> name <- "Tom"

O R has data types, but they are determined dynamically

> typeof(body_ temp)
[1] "double™

> typeof(name)

[1] "character"

Why the [1] in the Output!

O The print() function displays the value of a variable

> print(name)
[1] "Tom"

O You may wonder why R keeps prepending [1]
[t's because the output fits on one line

You'll see something like this when it does not

> X - 1:25
[1] 1 2 3 4 5 6 7 8 910 11 12 13 14 15
[16] 16 17 18 19 20 21 22 23 24 25

Vectors

O The 1:25 notation generated a sequence of numbers
These are stored in a data structure called a vector

Sort of like an array in C or Java (all of same type)

0O Use subscripts to refer to a specific element

In order to annoy me, R uses 1-based indexing

> X <- 1:25
> print(x[1])

[1] 1 T In many languages, this would refer
to the second element

Vectors Abound!

O Surprise: our variables are not single (scalar) values
They may just happen to contain a single value

They're really vectors

> print(name)
[1] "Tom"

> print(name[1])
[1] "Tom"

Creating Vectors

0O Use the c() function to create a multi-element vector

> dogs <- c("Fido", "Spot", "Buster")
> print(dogs[1])

[1] "Fido"
> print(dogs[2])
[1] "Spot"

O You can create a new vector from a subset of another

> two_dogs <- dogs[2:3]

> print(two_dogs[1])

[1] "Spot™

Displaying Vectors

O The print() function can display a vector

Prints elements (strings are quoted), followed by newline

> print(dogs)

[1] "Fido"™ "Spot" "Buster"
> print(dogs[2:3])

[1] "Fido" "Spot™

0O The cat() function omits any such formatting

> cat(dogs)
Fido Spot Buster>

Generating Random Numbers

O You saw earlier how to generate a sequence of numbers

R can also generate random numbers

O The rnorm() function generates N random numbers
Based on the normal distribution (AKA "bell curve"

Values are centered about zero

> z <- rnorm(8)

> print (2z)

[1] -0.6935897 -2.1828442 1.7268656 ©0.1267711
[5] -0.3590410 -0.8488329 -1.7032515 -0.6952838

Some Built-In Functions (1)

The sum() function adds up all numbers in a vector

> print(sum(2:5))
[1] 14

min() returns smallest value; max () returns the largest

>n<- c(3, 5, 199, -2, 17, 4, 0)
> print(min(n))

[1] -2

> print(max(n))

[1] 199

Some Built-In Functions (2)

The range () function shows the bounds of a vector

O It creates a two-element vector with min and max values

> X <- 10:500
> range(x)
[1] 10 500

mean() returns the average value

>n<-c¢(5, 7, 2, 3, 4, 8, 6, 9, 2, 1, 5)
> print(mean(n))
[1] 4.727273

Some Built-In Functions (3)

O The quantile() function calculates values at intervals

Imagine you had populated a vector with household incomes

> quantile(household incomes)
0% 25% 50% 75% 100%
7033 23427 44298 87513 979261

O sample() returns N values selected at random

> s <- sample(household incomes, 3)
> print(s)
[1] 50962 29168 43227

Creating Functions

O This example shows how to create and call a function
R shows a plus sign to denote line continuation

The parentheses following return are required

> quadruple <- function(x) {
+ return (x * 4)

+ }

> print(quadruple(3))

[1] 12

Applying Functions to Vectors

O Use sapply to call a function on each element

Result is a new vector

R has many "apply" variations

>nh <- 3:7

> print(n)

[1] 3456 7

> quadrupled n <- sapply(n, quadruple)
> print(quadrupled n)

[1] 12 16 20 24 28

[ists

0O All data in a vector must be of the same type

Lists can contain data of any type (including vectors)

O Create these with the 1ist () function

Access elements with weird multi-dimensional notation

> names <- c("Alice", "Bob", "Carol", "David")
> ages <- c(29, 37, 35, 41)

> people <- list(names, ages)

> print(people[[2]][3])

35

Data Frames

O This is an important data structure in R
[t's a list of vectors all having the same length

You can name each element when creating the vector

O Create using the data.frame() function

> height <- c(Abe=71, Betty=64, Chuck=75)
> weight <- c(Abe=170, Betty=125, Chuck=190)
> children = data.frame(height, weight)
> print(children)
height weight
Abe 71 170
Betty 64 125
Chuck 75 190

Data Frame Element Access

O You can access elements by name or index number

> print(children['Abe’, 'weight'])
[1] 170

> print(children$weight[1])

[1] 170

O The latter form is widely used with functions

> print(children$weight)

[1] 170 125 190

> print(mean(children$weight))
[1] 161.6667

Reading Data from CSV

O Imagine f00. sV contains this comma-separated data

hame,age,salary
Arno,52,75000
Burt,61,87250
Cleo,47,91000
Dave,23,42875
Earl,39,56500

O Read it into a data frame and show its range:

> foo <- read.csv(file="foo.csv",head=TRUE,sep=",")
> range(foo$salary)
[1] 42875 91000

Getting Help in R

O R has extensive builtin help
O To get help on using help (like man man in UNIX)

> ? help

O To view help for a specific function:

> ? read.csv

O To search for a topic (like man -k in UNIX)

| > ?? average |

Graphics

R has builtin support for creating charts and graphs
Add-on packages like "ggplot" makes this even better

This example creates a histogram data frame's column

> hist(children$height, main="Distribution of Height")

Shown on-screen, but it's easy Distribution of Height

to save them as PNG or PDF

2.0

Frequency
1.0

Run demo(graphics) or
demo(persp) for examples

0.0

| | | |
60 65 70 75

children$height

That's It for R...

O Any questions!

O Let's move on to some demos of Hue!

NOTE: The "Hue" presentation featured live demonstrations of Hue, a Web-based front
end for Hadoop and related tools such as Pig, Hive, Impala, HBase, Solr, and Spark.

Cloudera's Quickstart VM provides a ready-to-use installation of all of these tools

running in a virtual machine (VMWare, VirtualBox, and more). It's perfect for
experimenting, and you can download a free copy of the VM from here:

http://tiny.cloudera.com/guickstart

You can watch several short videos demonstrating various features in Hue here:

http://gethue.com/tutorials/

