
11/11/09

NetBeans PlatformNetBeans PlatformNetBeans Platform NetBeans Platform
Tom Wheeler

SIUE :: November 2009SIUE :: November 2009

2

Intro: What I Cover in this SectionIntro: What I Cover in this Section

□ Why modular applications are needed
□ Benefits of modular applications
□ NetBeans' Lookup API
□ How to separate API from implementation

◊ How to register implementations
◊ How to find them at runtime

□ Common Lookup idioms in NetBeans

The Need for Modular ApplicationsThe Need for Modular Applications

□ Applications get more complex
□ Assembled from pieces
□ Developed by distributed teams
□ Components have complex dependencies
□ Good architecture

◊ Know your dependencies
◊ Manage your dependencies

The Entropy of SoftwareThe Entropy of Software

□ Version 1.0 is cleanly designed...

The Entropy of SoftwareThe Entropy of Software

□ Version 1.1...a few expedient
hacks...we'll clean those up in 2.0

The Entropy of SoftwareThe Entropy of Software

□ Version 2.0...oops...but...it works!

The Entropy of SoftwareThe Entropy of Software

□ Version 3.0...Help! Whenever I fix one
bug, I create two more!

The Entropy of SoftwareThe Entropy of Software

□ Version 4.0 is cleanly designed. It's a
complete rewrite. It was a year late, but
it works...

The Entropy of SoftwareThe Entropy of Software

□ Version 4.1...does this look familiar?....

The Entropy of SoftwareThe Entropy of Software

□ TO BE CONTINUED....

API, Implementation and ClientAPI, Implementation and Client

□ Application Programming Interface
◊ Defines behavior of a class library
◊ But doesn't typically contain any logic
◊ Kind of like a word processor template

□ Implementation
◊ Fulfills the contract specified by the API
◊ Provides actual business logic

□ Client: code which calls the API

API and Implementation: DemoAPI and Implementation: Demo

□ I'll create a simple Tax Calculator API
□ And an implementation of that API

Benefits of ModularizationBenefits of Modularization

□ Separate API from implementation
□ Can easily replace implementation later

◊ Create something “quick-and-dirty” now
◊ Create something better when time allows
◊ Shouldn't require any change to your app.

□ Can even plug in new impl. at runtime
□ Can have multiple implementations

◊ Can allow the user to select one at runtime
◊ Handy for file format support

Modular Runtime Containers MustModular Runtime Containers Must

□ Ensure dependencies are satisfied
◊ In NetBeans, enforced at build and runtime

□ Allow only legal dependencies
◊ In NetBeans, no circular dependencies

□ Instantiate services at runtime
□ Allow for service registration
□ Allow for service discovery

Use an Existing Runtime ContainerUse an Existing Runtime Container

There is no good reason to create your own!!!

 RIP Homemade Frameworks 1995-2005

Class Loader PartitioningClass Loader Partitioning

Modular Libraries and DiscoveryModular Libraries and Discovery

Discovery and DependenciesDiscovery and Dependencies

?
So how will the SpellChecker API find its

implementation?

The Java Extension MechanismThe Java Extension Mechanism

□ In JDK since 1.3

□ Easy with JDK 6's
ServiceLoader.load()

□ Plain-text file in
META-INF/services

◊ Name is interface

◊ Content is FQN of
implementation class

Lookup – NetBeans SolutionLookup – NetBeans Solution

□ Small, NetBeans independent library
◊ org-openide-util.jar

□ A Lookup is dynamic
◊ Its contents can change (and fire events)
◊ Interested classes can listen to changes

□ A Lookup is instantiable
□ Lookups are composable
□ Can even use this outside NB Platform!

The Global LookupThe Global Lookup

□ The “Global” lookup is basically a singleton
◊ You can access it easily (example forthcoming)
◊ Use it to find reg. implementations of APIs

◊ They're registered via META-INF/services
◊ Or annotations...
◊ Or system filesystem...
◊ Such impls are commonly called “services”

A Global Lookup ExampleA Global Lookup Example

□ Suppose you have a SpellChecker API
◊ And at least one implementation
◊ Registered as described earlier

□ Example:

SpellChecker sc = Lookup.getDefault().lookup(SpellChecker.class)

□ Client code only need to know about API
◊ Don't need to know name of impl class!
◊ Don't even need to know impl module!

Lookup: Finding All ImplementationsLookup: Finding All Implementations

□ Previous example found just one impl.
◊ What if you want to find them all?

Lookup.Result<SpellChecker> r =
 Lookup.getDefault().lookupResult
 (SpellChecker.class);

Collection <SpellChecker> c =
 r.allInstances();

Lookup.ResultLookup.Result

Why is That Interesting?Why is That Interesting?

Clean Unloading/ReloadingClean Unloading/Reloading

□ This is how you get the “Global” lookup

 Lookup lkp = Lookup.getDefault();

□ You can add a listener to it (see next slide)
□ If a module is uninstalled, it will fire changes

Listening for ChangesListening for Changes

Lookup.Result<SomeClass> r =
someLookup.lookupResult (SomeClass.class);

r.addLookupListener (new LookupListener() {

 public void resultChanged (LookupEvent e) {

 //handler code here

 }

});

So...What's So Special About This?So...What's So Special About This?

?
What if objects had Lookups?

What if Lookups could proxy
each other?

A Lookup is a placeA Lookup is a place

□ A space objects swim into and out of
□ You can observe when specific types of

object appear and disappear
□ You can get a collection all of the instances

of a type in a Lookup

Local LookupsLocal Lookups

□ In addition to Global Lookup...
◊ There are also other lookups

□ Anything can provide a Lookup
◊ If it implements Lookup.Provider interface
◊ Nodes, DataObjects & TopComponents do this
◊ Common idiom to find an object's capabilities
◊ More details about this later in the course

Local Lookup: Selection in NetBeansLocal Lookup: Selection in NetBeans

□ Each main window tab (TopComponent)
has its own Lookup

◊ Some tabs show Nodes, which also have
Lookups, and proxy the selected Node's Lookup

□ A utility Lookup proxies the Lookup of
whatever window tab has focus

Lookup lkp =
Utilities.actionsGlobalContext();

Useful Utility ImplementationsUseful Utility Implementations

□ AbstractLookup + InstanceContent
◊ Lookup whose contents you can manage

□ Lookups.singleton(Object)
◊ A Lookup which contains exactly one thing

□ Lookups.fixed(Object[])
◊ A Lookup which does not change

Useful Utility ImplementationsUseful Utility Implementations

□ These two proxy to another Lookup
◊ ProxyLookup (Lookup[] otherLookups)

◊ Compose Lookup from other lookups

◊ Lookups.exclude (Lookup, Class[])
◊ Allows you to filter out instances based on class

34

Review QuestionsReview Questions

□ What are two benefits of modular apps?
□ Define “API” and “implementation”
□ What is meant by a “service”
□ What's a common way of registering a

service in the NetBeans Platform?
□ Can you listen to changes in a Lookup?

35

RecapRecap

□ Modularity provides many benefits
◊ Faster development
◊ Easier maintenance
◊ More flexibility

□ NetBeans' Lookup API
◊ Helps make this possible
◊ Allows you to separate API from impl
◊ Can easily register & find services
◊ Listen/react to changes in available services

36

Exercise (30 minutes)Exercise (30 minutes)

□ We'll work together to create a simple
platform app which calculates sales tax.

□ It will have three modules
◊ API
◊ Implementation
◊ Client

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	rip
	Slide 16
	classL
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

