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Intro: What I Cover in this SectionIntro: What I Cover in this Section

□ Why modular applications are needed
□ Benefits of modular applications
□ NetBeans' Lookup API
□ How to separate API from implementation

◊ How to register implementations
◊ How to find them at runtime

□ Common Lookup idioms in NetBeans



  

The Need for Modular ApplicationsThe Need for Modular Applications

□ Applications get more complex
□ Assembled from pieces
□ Developed by distributed teams
□ Components have complex dependencies
□ Good architecture

◊ Know your dependencies
◊ Manage your dependencies



  

The Entropy of SoftwareThe Entropy of Software

□ Version 1.0 is cleanly designed...



  

The Entropy of SoftwareThe Entropy of Software

□ Version 1.1...a few expedient 
hacks...we'll clean those up in 2.0



  

The Entropy of SoftwareThe Entropy of Software

□ Version 2.0...oops...but...it works!



  

The Entropy of SoftwareThe Entropy of Software

□ Version 3.0...Help!  Whenever I fix one 
bug, I create two more!



  

The Entropy of SoftwareThe Entropy of Software

□ Version 4.0 is cleanly designed.  It's a 
complete rewrite.  It was a year late, but 
it works...



  

The Entropy of SoftwareThe Entropy of Software

□ Version 4.1...does this look familiar?....



  

The Entropy of SoftwareThe Entropy of Software

□ TO BE CONTINUED....



  

API, Implementation and ClientAPI, Implementation and Client

□ Application Programming Interface
◊ Defines behavior of a class library
◊ But doesn't typically contain any logic
◊ Kind of like a word processor template

□ Implementation
◊ Fulfills the contract specified by the API
◊ Provides actual business logic

□ Client: code which calls the API



  

API and Implementation: DemoAPI and Implementation: Demo

□ I'll create a simple Tax Calculator API 
□ And an implementation of that API



  

Benefits of ModularizationBenefits of Modularization

□ Separate API from implementation
□ Can easily replace implementation later 

◊ Create something “quick-and-dirty” now
◊ Create something better when time allows
◊ Shouldn't require any change to your app.

□ Can even plug in new impl. at runtime
□ Can have multiple implementations

◊ Can allow the user to select one at runtime
◊ Handy for file format support



  

Modular Runtime Containers MustModular Runtime Containers Must

□ Ensure dependencies are satisfied
◊ In NetBeans, enforced at build and runtime

□ Allow only legal dependencies
◊ In NetBeans, no circular dependencies

□ Instantiate services at runtime
□ Allow for service registration
□ Allow for service discovery



  

Use an Existing Runtime ContainerUse an Existing Runtime Container

There is no good reason to create your own!!!

 RIP Homemade Frameworks 1995-2005



  

Class Loader PartitioningClass Loader Partitioning



  

Modular Libraries and DiscoveryModular Libraries and Discovery



  

Discovery and DependenciesDiscovery and Dependencies

?
So how will the SpellChecker API find its 

implementation?



  

The Java Extension MechanismThe Java Extension Mechanism

□ In JDK since 1.3

□ Easy with JDK 6's 
ServiceLoader.load()

□ Plain-text file in 
META-INF/services

◊ Name is interface

◊ Content is FQN of 
implementation class



  

Lookup – NetBeans SolutionLookup – NetBeans Solution

□ Small, NetBeans independent library
◊ org-openide-util.jar

□ A Lookup is dynamic
◊ Its contents can change (and fire events)
◊ Interested classes can listen to changes

□ A Lookup is instantiable
□ Lookups are composable
□ Can even use this outside NB Platform!



  

The Global LookupThe Global Lookup

□ The “Global” lookup is basically a singleton
◊ You can access it easily (example forthcoming)
◊ Use it to find reg. implementations of APIs

◊ They're registered via META-INF/services
◊ Or annotations...
◊ Or system filesystem...
◊ Such impls are commonly called “services”



  

A Global Lookup ExampleA Global Lookup Example

□ Suppose you have a SpellChecker API
◊ And at least one implementation
◊ Registered as described earlier

□ Example:

SpellChecker sc = Lookup.getDefault().lookup(SpellChecker.class)

□ Client code only need to know about API
◊ Don't need to know name of impl class!
◊ Don't even need to know impl module!



  

Lookup: Finding All ImplementationsLookup: Finding All Implementations

□ Previous example found just one impl.
◊ What if you want to find them all?

Lookup.Result<SpellChecker> r =   
  Lookup.getDefault().lookupResult 
    (SpellChecker.class);

Collection <SpellChecker> c = 
    r.allInstances();



  

Lookup.ResultLookup.Result



  

Why is That Interesting?Why is That Interesting?



  

Clean Unloading/ReloadingClean Unloading/Reloading

□ This is how you get the “Global” lookup 

   Lookup lkp = Lookup.getDefault();

□ You can add a listener to it (see next slide)
□ If a module is uninstalled, it will fire changes



  

Listening for ChangesListening for Changes

Lookup.Result<SomeClass> r = 
someLookup.lookupResult ( SomeClass.class );

r.addLookupListener (new LookupListener() {

    public void resultChanged (LookupEvent e) {

       //handler code here  

    }

});



  

So...What's So Special About This?So...What's So Special About This?

?
What if objects had Lookups?

What if Lookups could proxy 
each other?



  

A Lookup is a placeA Lookup is a place

□ A space objects swim into and out of
□ You can observe when specific types of 

object appear and disappear
□ You can get a collection all of the instances 

of a type in a Lookup



  

Local LookupsLocal Lookups

□ In addition to Global Lookup...
◊ There are also other lookups

□ Anything can provide a Lookup
◊ If it implements Lookup.Provider interface
◊ Nodes, DataObjects & TopComponents do this
◊ Common idiom to find an object's capabilities
◊ More details about this later in the course



  

Local Lookup:  Selection in NetBeansLocal Lookup:  Selection in NetBeans

□ Each main window tab (TopComponent)
has its own Lookup

◊ Some tabs show Nodes, which also have 
Lookups, and proxy the selected Node's Lookup

□ A utility Lookup proxies the Lookup of 
whatever window tab has focus

Lookup lkp = 
Utilities.actionsGlobalContext();



  

Useful Utility ImplementationsUseful Utility Implementations

□ AbstractLookup + InstanceContent 
◊ Lookup whose contents you can manage

□ Lookups.singleton(Object) 
◊ A Lookup which contains exactly one thing

□ Lookups.fixed(Object[]) 
◊ A Lookup which does not change



  

Useful Utility ImplementationsUseful Utility Implementations

□ These two proxy to another Lookup
◊ ProxyLookup (Lookup[] otherLookups )

◊ Compose Lookup from other lookups

◊ Lookups.exclude ( Lookup, Class[] )
◊ Allows you to filter out instances based on class
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Review QuestionsReview Questions

□ What are two benefits of modular apps?
□ Define “API” and “implementation”
□ What is meant by a “service”
□ What's a common way of registering a 

service in the NetBeans Platform?
□ Can you listen to changes in a Lookup?
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RecapRecap

□ Modularity provides many benefits
◊ Faster development
◊ Easier maintenance
◊ More flexibility

□ NetBeans' Lookup API
◊ Helps make this possible
◊ Allows you to separate API from impl
◊ Can easily register & find services
◊ Listen/react to changes in available services
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Exercise (30 minutes)Exercise (30 minutes)

□ We'll work together to create a simple 
platform app which calculates sales tax.

□ It will have three modules
◊ API
◊ Implementation
◊ Client
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