
11/11/09

NetBeans PlatformNetBeans PlatformNetBeans Platform NetBeans Platform
Tom Wheeler

SIUE :: November 2009SIUE :: November 2009

2

Intro: What I Cover in this SectionIntro: What I Cover in this Section

□ Limitations of Java's FileSupport
□ NetBeans FileSystem API

◊ How it improves on Java's file support
◊ How to use it

□ NetBeans System FileSystem
□ Layer Files and configuration

3

File Access in JavaFile Access in Java

□ Java represents files via java.io.File
◊ Can represent either a file or directory

□ I/O with files in Java
◊ FileOutputStream to write
◊ FileInputStream to read

4

Problems with java.io.FileProblems with java.io.File

□ java.io.File has some limitations
◊ Files assumed to exist only “on disk”
◊ File may or may not actually exist
◊ No support for event notification

□ Some of this is addressed in JSR 203
◊ Expected to be in Java 7

□ NetBeans FileSystems API solves it now!

5

FileSystem API FeaturesFileSystem API Features

□ Support for “virtual” files
◊ On-disk
◊ On a remote server
◊ An element in an XML document
◊ A record in a database

□ Support for event notification
◊ Create/change/delete/rename

6

FileSystem API Features (2)FileSystem API Features (2)

□ Support for attributes (metadata)
◊ Can get/set arbitrary values on FileObject

□ Support for file locking
◊ Works fine, though somewhat inefficient

□ Support for various filesystems
◊ e.g. on-disk, XML, ZIP file, memory-based
◊ Could also create your own

□ Each FileObject has input/output streams

7

FileSystem API OverviewFileSystem API Overview

□ FileSystem class
◊ Represents entire filesystem
◊ Typically hierarchical (like UNIX)
◊ FileSystem has a root (like UNIX)
◊ Provides access to individual FileObjects

8

FileSystem API Overview (2)FileSystem API Overview (2)

□ FileObject class
◊ Represents single item in file system

◊ Could be a file or a folder (container)

◊ Must exist in the filesystem
◊ Unlike java.io.File

◊ Allows deletion and creation of children
◊ Has a MIME type

9

FileSystem API Overview (3)FileSystem API Overview (3)

□ FileObject IO
◊ Write to FileObject

◊ Use its OutputStream

◊ Read from FileObject
◊ Use its InputStream
◊ Use new convenience methods

● asBytes() / asLines() / asText()

□ FileObjects just represent bits
◊ Not information, just raw data

10

FileSystem API ExamplesFileSystem API Examples

11

System FileSystemSystem FileSystem

□ NetBeans has a special filesystem
◊ Called the “System FileSystem”
◊ It's a registry for configuration information

◊ Roughly analogous to MS Windows registry
◊ Or the /etc directory on a UNIX system

◊ Used to configure many aspects of NB
◊ Menus, toolbars, keybindings
◊ Editor settings and app. preferences

12

Demo: Examine System FileSystemDemo: Examine System FileSystem

□ You can see the SysFS from the IDE
◊ Expand a module project

◊ It must have a layer file for this to work

◊ Expand “Important Files”
◊ Expand “<this layer in context>”

□ Let's examine the contents...

13

Layer FilesLayer Files

□ NB Platform is declarative
□ A module may contain a layer file

◊ A file in XML format
◊ Conforms to a DTD
◊ Referenced in module's manifest
◊ It's XML-based

◊ Self-describing and human-readable

□ Not all modules have (or need) them

14

Layer Files (2)Layer Files (2)

□ A layer file is a “slice” of the SysFS
◊ Allows a module to contribute content
◊ May add new items
◊ May modify or remove existing items

◊ Which were added in other modules
◊ Hence “this layer in context”

15

How Layer Files and SysFS WorkHow Layer Files and SysFS Work

□ NB Platform starts up
□ NB Platform finds all layer files
□ XML Layers are merged

◊ With a writable filesystem
◊ Result is actual filesystem on disk

□ NetBeans Platform opens
◊ You can see the result of the merge
◊ Windows/toolbars/menus/etc. reflect change

16

Layer File ExamplesLayer File Examples

□ Add to a folder
 <filesystem>

<folder name = “Menu”>
 <file name = "My New Menu"/>

</folder>
</filesystem>

□ Delete from a folder

<filesystem>

<folder name = “Menu”>
 <file name="Help_hidden"/>

</folder>
</filesystem>

17

Layer File and SysFS DemoLayer File and SysFS Demo

□ I'll create a new action using wizard
◊ This will add/modify layer file for my module
◊ We'll examine the change
◊ We'll run the app
◊ We'll modify the layer entry
◊ And run the app to see the effect

18

Programmatic Interaction with SysFSProgrammatic Interaction with SysFS

□ You can access SysFS from your app:

 // to get the SysFS root
 FileUtil.getConfigRoot()

 // to get a specific folder
 FileUtil.getConfigFile(“Menu”);

□ Then use FS API methods to read it
□ The System FileSystem is writable

◊ You can even modify it at runtime
◊ See developer FAQ on Wiki for example

19

Review QuestionsReview Questions

□ Name two limitations of java.io.File
□ What are two classes in FileSystem API?
□ Name three types of filesystems
□ What is the System FileSystem?
□ What is a layer file?
□ How can you view SysFS in the IDE?

20

RecapRecap

□ Java's file support has limitations
□ FileSystem API in NB improves on this

◊ Supports disk, RAM and other storage
◊ Support for file locking and notification

□ System FileSystem used for configuration
◊ Layer files are merged at runtime
◊ Layer files can add/modify/remove things

21

Exercise (30 minutes)Exercise (30 minutes)

□ Create an application which prints the
contents of the System Filesystem

◊ I will help you get started
◊ We'll do these together

◊ Create new app and add a module to it
◊ Add dependency on FileSystem API
◊ Create/register an action

◊ You will then add the logic to print it out

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

